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Abstract

We present an upgrade of our previous theoretical model of a power-compensated twin calorimeter with particular reference to the DSC-7
manufactured by Perkin-Elmer. The aim of this generalization is to provide an analytical description of a measured heating curve in a fairly
wide range of temperature. To reach this goal, we emulate the “�T balance” (�TB) control and the “slope” (SL) control of the DSC-7, which
are used to modify curvature and slope of a measured curve. The implementation of these two functions has simply required the introduction
of three new parameters. In this way, we got a fairly good analytical description of the calorimeter response, when the holders are empty,
whatever the setting of both controls. We present results in the temperature range from 248 to 423 K. One of the above mentioned parameters
turns out to be linearly dependent exclusively on the�TB; while the other two are linearly dependent both on the�TB and SL. These results
provide the means to get a calibration of the instrument with respect to the�TB and SL settings.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In our previous paper[1], we described a mathemat-
ical model of a power-compensated differential scanning
calorimeter (PCDSC) with particular reference to a DSC-7
manufactured by Perkin-Elmer, considered in its three fun-
damental elements: average temperature amplifier, differen-
tial temperature amplifier and programmer.

Fig. 1shows a schematic representation of a holder in its
surroundings. We considered the slab ABCD of the holder
as made up of two parts, as indicated by the broken line
in Fig. 1 and as a third part the pan (plus the sample to be
studied). Then, we applied the energy conservation law to
the various parts obtaining[1], in case of an empty holder:

P(t) = C1
dT1(t)

dt
+ T1(t)

R1
+ T1(t) − T2(t)

R12

T1(t) − T2(t)

R12
= C2

dT2(t)

dt
+ T2(t)

R2

(1)
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wheret is the time;P(t) the power provided to the holder;
C1 andC2 the heat capacities;T1(t), T2(t) the temperatures;
R12 the coupling resistance between the two parts of the
holder; andR1, R2 the coupling thermal resistances between
the holder enclosure block (HEB, hatched inFig. 1) and the
two parts of the holder respectively. All quantities in system
(1) are referred to the HEB temperature, but can also be
referred to the initial isothermal temperature and we suppose
so throughout this paper. From this system, a second order
equation was worked out, whose Laplace transform is

p(L)=
[
R12C1C2L

2 +
(
C1 + C2 + R12C1

R2
+ R12C2

R1

)
L

+
(

1

R1
+ 1

R2
+ R12

R1R2

)]
t2(L) (2)

whereL is a complex variable and the small letters stand for
the Laplace transforms of the functions indicated by capital
letters in the time domain.

As it is well known, temperature control of the two cou-
pled holders, in a DSC-7, is realized in two half-cycles:
the average power half-cycle and the differential power
half-cycle. These two operations are performed by the
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Fig. 1. Schematic representation of a holder in its surroundings. The
broken line divides the slab ABCD into two parts, 1 and 2, where the
heater and sensor respectively are embodied. Pan (plus its content) is the
third part. (From: N. Zucca, G. Erriu, S. Onnis, D. Zedda, A. Longoni,
Thermochim. Acta 366 (2001) 15–30.)

average temperature amplifier and by the differential temper-
ature amplifier, respectively. During the power half-period
τ/2, the relevant control system operates so that the average
temperatureTA = (T2S + T2R)/2 increases linearly with
time, tracking the signalTP(t) coming from the program-
mer (letters S and R in the subscripts refer to the sample
and reference holders, respectively). During the differential
half-cycle, the energy (P+D/2)τ/2 is supplied to the holder
with the lower temperature and the energy (P−D/2)τ/2 is
supplied to the holder with the higher temperature, in order
to decrease their temperature difference.

The fundamental equations describing the operation of an
empty calorimeter are therefore the energy conservation law,
expressed byEq. (2)and written for both holders, and equa-
tions for the temperature control for the two half-cycles. We
postulated a PID (proportional, integral, differential) control
for both the half-cycles and then we got[1] the final system,
which we now report in its complex form

p(L) + 1
2d(L) = [α2L

2 + α1L + α0]t2S(L)

p(L) − 1
2d(L) = [β2L

2 + β1L + β0]t2R(L)

p(L) = AC[tP(L) − tA(L)]

d(L) = −BC[t2S(L) − t2R(L)]

tA(L) = 1
2[t2S(L) + t2R(L)]

tD(L) = [t2S(L) − t2R(L)]

(3)

The explicit forms ofα2, α1, α0, β2, β1, β0, AC, andBC are
reported inEq. (A.1).

TP(t), the reference signal for the average temperature
amplifier, is generated by the programmer, whose input is
the so called programmed temperature,θ(t) = uP(t + q),
where uP is the scanning rate. In our previous paper, we
approximated the programmer transfer function by a linear
second order equation obtaining fortP(L)

tP(L) = ω2uP

L2 + 2ζωL + ω2

(
1

L2
+ q

L

)
(4)

In system (3),tP(L) is the input and all the other quantities
are the outputs. For the power differenced(L), as spelt out
in [1], we got

d(L)= PD3L
3 + PD2L

2 + PD1L + PD0

A5L5 + A4L4 + A3L3 + A2L2 + A1L + A0

× ω2uP

L2 + 2ζωL + ω2

(
1

L2
+ q

L

)

− PD3qω
2uP

A5L5 + A4L4 + A3L3 + A2L2 + A1L + A0

(5)

The explicit forms of the coefficients of the polynomials
in the numerator and in the denominator are reported in
Eq. (A.2).

Eq. (5) enabled us to get good results in fitting the un-
balance that occurs when the calorimeter switches from the
isothermal to the running state, and consequently to obtain
an analytical expression of the transfer function of the in-
strument. We now want to generalizeEq. (5)to make it suit-
able to interpret the behavior of measured curves in temper-
ature ranges as wide as those commonly used. To achieve
this, we take a closer look at temperature measurement by
electrical resistances, furthermore we incorporate into our
model two characteristic functions of the DSC-7, namely
the “�T balance” (�TB) control and the “slope” (SL) con-
trol, which are used to optimize curvature and slope of the
experimental curves in the temperature range in which one
operates.

2. Temperature measurement

Electric resistivity dependence on temperature is largely
exploited for temperature measurement. The dependence be-
tween these two quantities is usually expressed by a poly-
nomial. In small temperature ranges, it is sufficient to use
only its linear term, but this approximation is no longer ad-
equate as the range increases.Fig. 2 shows the behavior of
the resistivity (ρ) of a metal as a function of its temperature
(T∗) and its approximation by a straight line in the range be-
tweenT ∗

1 andT ∗
2 . As one can see, temperatures (Tl ) worked

out by this straight line are greater than the temperaturesT∗
obtained by theρ(T∗) function.
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Fig. 2. Behavior of the resistivity, ρ, of a metal as a function of temper-
ature, T∗, and its approximation by a straight line in the range between
T ∗

1 and T ∗
2 . Temperatures Tl worked out by this straight line, between T ∗

1
and T ∗

2 , are greater than temperatures T∗ obtained by the ρ(T∗) function.

DSC-7, the instrument by which we will test our theo-
retical model, uses distributed platinum thermometers [2].
Platinum resistance thermometers calibrated under specified
conventions play a major role, as they enter in the definition
of a part of the international temperature scale ITS-90 [3].
As an approximation, we simply fit literature data on plat-
inum resistivity as a function of temperature [4] by a third
degree polynomial

ρ(T ∗) = ρ3T
∗3 + ρ2T

∗2 + ρ1T
∗ + ρ0 (6)

In the range between 60 and 900 K, the coefficients are

ρ3 = −4.37 × 10−10 �m K−3;
ρ2 = −5.23 × 10−6 �m K−2;
ρ1 = 4.22 × 10−2 �m K−1; ρ0 = −1.42�m (7)

The full range of operation of a DSC-7 is between T ∗
1 =

103 K and T ∗
2 = 1003 K [2]. To make a calibration in this

full range, we calculated ρ(1003) using Eq. (6). To obtain the
relation between the temperatures T∗ and Tl, let us indicate
by G(T∗) the difference

G(T ∗) = Tl − T ∗ (8)

From Fig. 2, we see that for every value of resistivity ρ we
can write

ρ3T
∗3 + ρ2T

∗2 + ρ1T
∗ + ρ0 = ρ∗

1Tl + ρ∗
0 (9)

where the second term indicates the straight line through the
two calibration points. From Eqs. (8) and (9), we obtain

G(T ∗) = G3T
∗3 + G2T

∗2 + G1T
∗ + G0 (10)

whose coefficients are

G3 = −1.22 × 10−8 K−2; G2 = −1.46 × 10−4 K−1;
G1 = 0.175; G0 = −16.44 K (11)

In the temperature range in which we operated (between
248 and 423 K), the correction polynomial G(T∗) can be ap-
proximated by a 2nd degree polynomial, whose coefficients
are

G2 = −1.59 × 10−4 K−1; G1 = 0.18;
G0 = −17.04 K (12)

We can now apply these considerations to the temperatures
of the two holders. As it has been said in the previous section,
we refer all quantities to their values at the temperature TI
of the lower isotherm. For the temperature T∗ we obviously
get (T ∗ − TI), which in addition we shall consider to be the
programmed temperature, namely T ∗–TI = θ(t) = uP(t+q).
The correction polynomial, in its 2nd degree approximation,
referred to its isotherm value becomes

G∗(t) = G(TI + θ) − G(TI) = G∗
2(uPt)

2 + G∗
1uPt + G∗

0

(13)

where we put

G∗
2 = G2

G∗
1 = G1 + 2G2(TI + quP)

G∗
0 = quP[G1 + G2(2TI + quP)]

(14)

From Eq. (8), written for temperatures of the sample holder
(T2S) and of the reference holder (T2R), we therefore get

T2S = Tl,2S − G∗(t)
T2R = Tl,2R − G∗(t)

(15)

If we insert Eq. (15) into the power control equation (3rd
equation in system (3)), we get

p(L) = AC

[
tP(L) −

(
tl,2S(L) + tl,2R(L)

2
− g∗(L)

)]

(16)

which can be obviously written

p(L) = AC

[
(tP(L) + g∗(L)) − tl,2S(L) + tl,2R(L)

2

]
(17)

which means that the non-linear response of the sensors can
be accounted for in the reference signal tP rather than in the
tl temperatures. Consequently, if the average temperature of
the two holders has to increase linearly as the programmed
temperature θ(t), then the reference signal TP(t) cannot be
linear any longer, but has to increase as a 3rd degree polyno-
mial (or as a 2nd degree polynomial if we use the approxima-
tion (12)). Taking this into account, we will consider, from
now on, temperatures in system (3) as Tl temperatures and
we drop the subscript “l” to make symbols easier to read.

For simplicity sake, we assume that the transfer function
for the correction signal G∗(t) is the same as that for the
programmed temperature (Eq. (4)) and consequently we use
for the reference signal the following expression
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tP(L)= ω2uP

L2 + 2ζωL + ω2

(
1

L2
+ q

L

)

+ ω2uP

L2 + 2ζωL + ω2

(
2uPG

∗
2

L3
+ G∗

1

L2
+ G∗

0

L

)

= S2L
2 + S1L + S0

(L2 + 2ζωL + ω2)L3
(18)

where we put

S2 = (q + G∗
0)ω

2uP

S1 = (1 + G∗
1)ω

2uP

S0 = 2G∗
2ω

2u2
P

(19)

3. �T B and SL controls

Small asymmetries in heat capacities of the holders, in
their coupling thermal resistances with the environment and
in electric resistances of the temperature sensors obviously
affect the output of a differential calorimeter. All these
causes of unbalance can be easily accounted for in our
model by replacing, in system (3), the average temperature
tA and the temperature difference tD with the weighted av-
erage temperature and the weighted temperature difference.
Namely

tA(L) = 1
2 [(1 − η)t2S(L) + (1 + η)t2R(L)],

tD(L) = [(1 − η)t2S(L) − (1 + η)t2R(L)], (−1 < η < 1)

(20)

When η=0, we obtain the original equations in system (3). In
view of the 4th and 6th equations of this system, if η varies
progressively from −1 to +1 the output d(L) passes from
a negative to a positive value, with a consequent variation
both in its curvature and slope. As a mater of fact, when
we operate on the knob of the �TB control of a DSC-7 we
just obtain the same kind of modifications. We can therefore
consider Eq. (20) as the �TB equations of our model.

To see how the output d(L), given by Eq. (5), is affected
by Eq. (20), we can solve these equations with respect to
t2S and t2R

t2R = 1

1 + η

(
tA − tD

2

)
; t2R = 1

1 + η

(
tA + tD

2

)
(21)

Substituting into the first two equations of system (3) we
obtain

p(L) + d(L)

2
= [α2L

2 + α1L + α0]
1

1 − η

×
[
tA(L) + tD(L)

2

]

p(L) − d(L)

2
= [β2L

2 + β1L + β0]
1

1 + η

×
[
tA(L) − tD(L)

2

]
(22)

If we make the following positions

α2 → α2

1 − η
≈ α2(1 + η), β2 → β2

1 + η
≈ β2(1 − η)

α1 → α1

1 − η
≈ α1(1 + η), β1 → β1

1 + η
≈ β1(1 − η)

α0 → α0

1 − η
≈ α0(1 + η), β0 → β0

1 + η
≈ β0(1 − η)

(23)

system (3), modified by Eq. (20), turns out to be formally
identical to its unmodified form. This means that the output
d(L) is still formally given by Eq. (5), which in view of
positions (23) can be written

d(L)= PD3L
3 + PD2L

2 + PD1L + PD0

A5L5 + A4L4 + A3L3 + A2L2 + A1L + A0
tP(L)

+ η
DB3L

3 + DB2L
2 + DB1L + DB0

A5L
5 + A4L

4 + A3L
3

+A2L
2 + A1L + A0

tP(L)

− PD3qω
2uP

A5L5 + A4L4 + A3L3 + A2L2 + A1L + A0

(24)

where we put

DB3 = (α2 + β2)KPHP

DB2 = (α1 + β1)KPHP + (α2 + β2)KIHP

DB1 = (α0 + β0)KPHP + (α1 + β1)KIHP

DB0 = (α0 + β0)KIHP

(25)

We leave unchanged the denominators of Eq. (24) as mod-
ifications induced by positions (23) are practically negligi-
ble as they contain terms in η2 and terms which are linear
combinations of the differences (α2 − β2), (α1 − β1), and
(α0 − β0).

The parameter η modifies both curvature and slope
of the output signal, but it could be useful, as in the
case of the DSC-7, to modify separately its slope. This
could be achieved by adding a “slope signal” either up-
stream, i.e. summed directly to the reference signal TP(t)
or downstream, i.e. summed directly to Eq. (24). In the
first case, as results from Eq. (24), the slope signal would
be affected by the transfer function of the calorimeter.
This last function depends on the heat capacity of the
two holders, and consequently the slope signal would
be different whether the holders are empty or not. In
the second case, the slope signal would be independent
of the state of the holders. We opted for this last solu-
tion. We indicate by f(L) the transfer function of a cir-
cuit devoted to generate the slope signal and suppose
its input to be the reference signal tP(L). With these hy-
potheses, the general form of the calorimeter output be-
comes
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d(L)= PD3L
3 + PD2L

2 + PD1L + PD0

A5L5 + A4L4 + A3L3 + A2L2 + A1L + A0
tP(L)

+ η
DB3L

3 + DB2L
2 + DB1L + DB0

A5L
5 + A4L

4 + A3L
3

+A2L
2 + A1L + A0

tP(L)

− PD3qω
2uP

A5L5 + A4L4 + A3L3 + A2L2 + A1L + A0

+ f(L)tP(L) (26)

We shall try to work out a simple analytical expression for
f(L) from the analysis of the measured curves. The differ-
ence of two measured curves differing exclusively in their
slope signal, in view of Eq. (26), should be described by the
following equation

�d(L) = [f2(L) − f1(L)]tP(L) (27)

If [f2(L) − f1(L)] is a constant then Eq. (27) turns out
to be a polynomial whose coefficients are proportional to
those of the reference signal tP(L). But in this way the
fittings are not very good. One gets much better results
if Eq. (27) incorporates both the signal tP(L) and its in-
tegral. This means that the numerator of f(L) should be
H0/L + H1, where H0 and H1 will be better specified in
the following section. To account for the initial transient of
the above mentioned curve differences, we supposed f(L) to
be a second order function and, to reduce the number of
parameters, we supposed in addition its roots to be equal.
As a consequence, we used for f(L) the following expres-
sion

f(L) = H0 + H1L

(L + µ)2L
(28)

where µ is the root. Eq. (27) can therefore be writ-
ten

�d(L) = �H0 + �H1L

(L + µ)2L
tP(L) (29)

where �H0 and �H1 stand for the differences of the
homonymous parameters related to two curves differing
exclusively in the SL values.

In conclusion, taking into account Eqs. (26) and (28) the
final expression for the theoretical output of the calorimeter
becomes

d(L)= PD3L
3 + PD2L

2 + PD1L + PD0

A5L5 + A4L4 + A3L3 + A2L2 + A1L + A0
tP(L)

+ η
DB3L

3 + DB2L
2 + DB1L + DB0

A5L
5 + A4L

4 + A3L
3

+A2L
2 + A1L + A0

tP(L)

− PD3qω
2uP

A5L5 + A4L4 + A3L3 + A2L2 + A1L + A0

+H0 + H1L

(L + µ)2L
tP(L) (30)

4. Results and discussion

To verify the final expression of the output, given by
Eq. (30), we used a DSC-7 calorimeter. We carried out sev-
eral heating runs with empty holders, using three settings of
�TB, namely 45, 57 and 65. For each of these values we
used the following settings of SL: 15, 25, 35, 45, 55, 65,
and 75. All experiments were repeated three times. All mea-
surements were carried out with the calorimeter operating in
subambient mode (with Intracooler II accessory), with he-
lium as a purge gas. The following settings were maintained
throughout all experiments: ordinate filter factor = 0; lag
compensation = 0; heating rate = 20 K min−1. Tempera-
ture calibration was repeated at each �TB, using Hg and In
as standards. Ordinate calibration was performed using In
as the standard. Laboratory temperature was controlled at
295.0 ± 0.3 K throughout all experiments.

As a first step of our elaboration, we used Eq. (29) for
fitting the curve differences of two heating measured curves
differing exclusively in SL setting. �H0 and �H1 are the
coefficients of a linear combination of the two functions
h0(L) = tP(L)/(L + µ)2L and h1(L) = tP(L)/(L + µ)2

which are non linear in the parameter µ and in the param-
eters ζ, ω, appearing in the expression of tP in Eq. (18).
Consequently, the error function χ can have more than one
minimum in the parameter hypersurface. It is therefore nec-
essary, at the beginning of the process of fitting, to local-
ize one of these minima, either tentatively or by using one
of the searching techniques in the parameter space [5]. We
took for the parameters ω and ζ the values ω = 1.46 s−1 and
ζ = 1.02, obtained in our previous work [1], and we opti-
mized the parameter µ by the Marquardt algorithm [5]. At
every optimization cycle the two functions h0(L) and h1(L)
were worked out and then the coefficients �H0 and �H1
were calculated by a linear fitting on the whole measured
curve. Following this, using these values of �H0 and �H1,
the parameter µ was optimized using only the transient part
of the measured curve, where the variation of µ has a promi-
nent effect. The parameters �H0 and �H1 turned out to be
proportional to the slope difference �SL of the two mea-
sured curves, precisely their mean values and standard de-
viations are: �H0 = (−0.0131 ± 0.0004)× 10−7 �SL and
�H1 = (0.076±0.001)×10−4 �SL. The units of �H0 and
�H1 are W K−1 s−3 and W K−1 s−2, respectively. The mean
value of µ and its standard deviation, obtained from all pairs
of measured curves differing exclusively in SL setting, is
µ = 1.02 ± 0.01 s−1. Fig. 3a shows some curve differences
and their fittings. Fig. 3b is the zoom in their transient zone.

The elaboration of each measured curve, using Eq. (30),
was carried out using an analogous procedure. The param-
eters H0, H1 and η were calculated by linear fitting on the
whole measured curve and the parameters KP, KI, HP, R12S
and q were optimized in the transient zone by the Marquardt
algorithm. ζ, ω and µ were kept constant in these elabora-
tions, using the values obtained from the fitting of the above
mentioned curve differences. Heat capacities C2S and C2R,
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Fig. 3. Typical curves obtained by subtracting two measured curves differing exclusively in the SL values (�SL = 10, 20, 30, and 40). Sample and
reference holders are empty; heating rate, 20 K min−1; �TB setting, 57. (a) Difference between experimental points, recorded in 0.2 s steps (actually
shown, 1 every 50) over the entire scanning range, and fitting function (—) in accordance with Eq. (29). Standard deviation (�) and correlation coefficient
(R) of the fittings: �SL = 40, σ = 7.02×10−3 mW, R = 0.9999999; �SL = 30, σ = 7.41×10−3 mW, R = 0.9999998; �SL = 20, σ = 7.49×10−3 mW,
R = 0.9999995; and �SL = 10, σ = 7.28 × 10−3 mW, R = 0.9999998; (b) Zoom on the initial transient (points actually shown, 1 every 2).

as well as R2S and R2R, the thermal coupling resistances
with the HEB, have been put equal to each other, namely
C2S = C2R = 0.25 J K−1 and R2S = R2R = 120 K W−1.
This means that possible small differences between these
quantities will be accounted for in the other fitting parame-
ters (especially in the �TB and SL parameters). The values
of all the other parameters in Eq. (30), which have been left
constant in all fitting procedures, are reported in Appendix A
(Eq. (A.3)). The values of the parameters KP, KI, HP, R12S,
q and their standard deviations, obtained from these elabo-
rations, are reported in Table 1.

Fig. 4 shows the results of the fittings by Eq. (30) of a
few measured heating curves carried out at constant SL and
with different �TB settings. Fig. 4a refers to the entire scan
range and Fig 4b is the zoom in the transient zone.

Fig. 5 shows the analogous results for heating curves car-
ried out at the same �TB and at different SL settings. The
fittings are generally as good as these.

Fig. 6 show the parameters H0 and H1 against SL. Slopes
and intercepts of these straight lines are reported in Table 2.
As one can see, the H0 and H1 slopes are practically

Table 1
Mean value of the parameters obtained in the fitting, by Eq. (30), of all the measured curves, grouped according to their �TB value (first column)

�TB KP (W K−1) KI (W K−1 s−1) HP (W K−1) R12S (W K−1) q (s)

45 0.65 ± 0.02 0.033 ± 0.003 2.60 ± 0.09 2.220 ± 0.001 0.058 ± 0.006
57 0.75 ± 0.03 0.043 ± 0.004 2.47 ± 0.13 2.222 ± 0.003 0.067 ± 0.005
65 0.86 ± 0.04 0.053 ± 0.007 2.53 ± 0.07 2.231 ± 0.003 0.077 ± 0.004

independent of the �TB setting. Their mean values and stan-
dard deviations are (0.0129 ± 0.0002) × 10−7 W K−1 s−3

and (−0.0753 ± 0.0005) × 10−4 W K−1 s−2, respectively,
which are in agreement with the values obtained fitting
by Eq. (29) the above mentioned curve differences. The
H0-intercept, qH0 , and H1-intercept, qH1 , turn out to be
linear functions of �TB. Their mean values and standard
deviations, obtained from Table 2, are

qH0 = [(−0.1836 ± 0.0003)�TB + 9.67 ± 0.02] × 10−7,

qH1 = [(−0.019 ± 0.003)�TB + 5.0 ± 0.2] × 10−4 (31)

where the units of qH0 and qH1 are W K−1 s−3 and
W K−1 s−2 respectively. Taking these results into account,
the explicit forms of H0 and H1 are

H0 = (−0.1836�TB + 9.67 + 0.0129SL) × 10−7,

H1 = (−0.0188�TB + 4.96 + 0.0753SL) × 10−4 (32)

where the units of H0 and H1 are W K−1 s−3 and W K−1 s−2,
respectively.
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Fig. 6. Linear behavior of H0 and H1 as a function of SL. All experiments have been repeated three times, but the corresponding points are practically
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Table 2
Mean value and standard deviation of the parameters of the straight lines of H0 and H1 in Fig. 6, for each value of �TB

�TB Slope of H0

(×10−7 W K−1 s−3)
Intercept of H0

(×10−7 W K−1 s−3)
Slope of H1

(×10−4 W K−1 s−2)
Intercept of H1

(×10−4 W K−1 s−2)
η (×10−3)

45 0.0130 ± 0.0002 +1.41 ± 0.01 −0.0758 ± 0.0005 4.13 ± 0.02 +4.00 ± 0.02
57 0.0126 ± 0.0002 −0.79 ± 0.01 −0.0745 ± 0.0005 3.86 ± 0.02 −0.78 ± 0.04
65 0.0131 ± 0.0002 −2.26 ± 0.01 −0.0755 ± 0.0004 3.76 ± 0.02 −3.93 ± 0.03

The last column reports mean value and standard deviation of the parameter η of Eq. (30).

The last column of Table 2 reports the mean values and
standard deviations of the parameter η for each family of
curves with the same �TB. The small values of the standard
deviation suggest that η is independent of the slope while it
turns out to be linearly dependent on the �TB values. From
Table 2 we get

η = (−0.397�TB + 21.84) × 10−3 (33)

The standard deviations of the slope and intercept are 0.001
and 0.07, respectively.

Eqs. (32) and (33) express the parameters H0, H1 and
η as functions of the �TB and SL values. These equa-
tions can therefore be considered as calibration equa-
tions of the instrument, with respect to �TB and SL
values.

5. Conclusion

We have presented an upgrade of our model of a PCDSC,
with a particular reference to a DSC-7 manufactured by
Perkin-Elmer. The aim of this generalization is to provide
an analytical description of a measured heating curve in a
fairly wide range of temperature. To reach this goal, we
have implemented in our model two fundamental functions,
namely the �TB control and the SL control. The �TB con-
trol is used to modify the curvature of a measured curve in
the temperature range in which one operates. The use of the
�TB control also modifies the slope of a measured curve,
and so the use of the SL control allows a user a further
adjustment of the slope. The implementation of these two
functions has simply required the introduction of three new
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parameters. In this way we got a fairly good analytical de-
scription of the calorimeter response, when the holders are
empty, whatever the settings of both controls. We have pre-
sented results in the temperature range from 248 to 423 K.
One of the above mentioned parameters turns out to be lin-
early dependent exclusively on �TB; while the other two are
linearly dependent both on the �TB and SL. These results
provide the means to get a calibration of the PCDSC with
respect to the �TB and SL settings.

The analytical description of the unbalance that occurs
when a PCDSC switches from the isothermal to the scanning
state, presented in our previous paper, allowed us to evalu-
ate the impulse response of the instrument. The analytical
description of the whole measured curve could allow us, as
a natural development of this work, an accurate evaluation
of the heat capacity of a sample.
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Appendix A

The explicit form of the functions in system (3) is

α2 = R12SC1SC2S

α1 = C1S + C2S + R12S

(
C1S

R2S
+ C2S

R1S

)

α0 = 1

R1S
+ 1

R2S
+ R12S

R1SR2S

β2 = R12RC1RC2R

β1 = C1R + C2R + R12R

(
C1R

R2R
+ C2R

R1R

)

β0 = 1

R1R
+ 1

R2R
+ R12R

R1RR2R

AC = KP + KI

L
+ KDL

BC = HP + HI

L
+ HDL

(A.1)

The explicit form of the coefficients in Eq. (5) is

PD3 = (α2 − β2)KPHP

PD2 = (α1 − β1)KPHP + (α2 − β2)KIHP

PD1 = (α0 − β0)KPHP + (α1 − β1)KIHP

PD0 = (α0 − β0)KIHP

A5 = α2β2

A4 = (α2β1 + α1β2)

A3 = (α2β0 + α1β1 + α0β0)

+ 1
2 (KP + HP)(α2 + β2)

A2 = (α1β0 + α0β1) + 1
2 (KP + HP)(α1 + β1)

+ 1
2KI(α2 + β2)

A1 = (α0β0 + KPHP) + 1
2 (KP + HP)(α0 + β0)

+ 1
2KI(α1 + β1)

A0 = HPKI + 1
2KI(α0 + β0)

(A.2)

The values of the parameters kept constant in all fittings are

KD = HD = HI = 0

C1S = C1R = C2R = 0.25 J K−1

R1S = R1R = 120 K W−1

R2R = 280 K W−1

R12R = 2.3 K W−1

(A.3)
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